Interpolating Stabilized Element Free Galerkin Method for Neutral Delay Fractional Damped Diffusion-Wave Equation
نویسندگان
چکیده
A numerical solution for neutral delay fractional order partial differential equations involving the Caputo derivative is constructed. In line with this goal, drift term and time are discretized by a finite difference approximation. The energy method used to investigate rate of convergence unconditional stability temporal discretization. interpolation moving Kriging technique then approximate space derivative, yielding meshless formulation. We conclude some experiments that validate theoretical findings.
منابع مشابه
The Galerkin finite element method for a multi-term time-fractional diffusion equation
Article history: Received 27 January 2014 Received in revised form 22 October 2014 Accepted 26 October 2014 Available online 30 October 2014
متن کاملDiscontinuous Galerkin Finite Element Method for the Wave Equation
The symmetric interior penalty discontinuous Galerkin finite element method is presented for the numerical discretization of the second-order wave equation. The resulting stiffness matrix is symmetric positive definite and the mass matrix is essentially diagonal; hence, the method is inherently parallel and leads to fully explicit time integration when coupled with an explicit timestepping sche...
متن کاملElement free Galerkin method for crack analysis of orthotropic plates
A new approach for analyzing cracked problems in 2D orthotropic materials using the well-known element free Galerkin method and orthotropic enrichment functions is proposed. The element free Galerkin method is a meshfree method which enables discontinuous problems to be modeled efficiently. In this study, element free Galerkin is extrinsically enriched by the recently developed crack-tip orthot...
متن کاملLeapfrog/Finite Element Method for Fractional Diffusion Equation
We analyze a fully discrete leapfrog/Galerkin finite element method for the numerical solution of the space fractional order (fractional for simplicity) diffusion equation. The generalized fractional derivative spaces are defined in a bounded interval. And some related properties are further discussed for the following finite element analysis. Then the fractional diffusion equation is discretiz...
متن کاملFinite Element Methods for Convection Diffusion Equation
This paper deals with the finite element solution of the convection diffusion equation in one and two dimensions. Two main techniques are adopted and compared. The first one includes Petrov-Galerkin based on Lagrangian tensor product elements in conjunction with streamlined upwinding. The second approach represents Bubnov/Petrov-Galerkin schemes based on a new group of exponential elements. It ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of function spaces
سال: 2021
ISSN: ['2314-8896', '2314-8888']
DOI: https://doi.org/10.1155/2021/6665420